Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(14): 10045-10053, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38527965

RESUMO

Hybridization of microbial cells with inorganic nanoparticles that could dramatically improve cellular functions such as electron transfer has been realized by the random attachment or stochastic entry of the nanoparticles. Clearly, the selective growth of inorganic nanoparticles on target functional organelles is ideal for such hybridization. Here, we report the selective growth of gold nanocrystals in the intermembrane space (IMS) of Escherichia coli by exploiting the electron transport chain (ETC). We systematically show that gold ions are permeated through porins in the outer membrane of E. coli and further reduced to gold nanocrystals by the ETC in live E. coli. We directly observe that the resulting gold nanocrystals exist only in the IMS by transmission electron microscopy measurements of cross-sectioned E. coli. Molecular dynamics simulations suggest that once gold ions are reduced to small nuclei by the ETC, the nuclei can be stably physisorbed onto ETC complexes, further supporting the ETC-mediated growth. Finally, we show that the ATP synthesis of E. coli where gold nanocrystals are formed in the IMS is up to 9 times higher than that of E. coli alone. We believe that our work can significantly contribute to not only improving microbial metabolic functions for biological energy conversion but also restoring physiological dysfunctions of microbial cells for biomedicine.


Assuntos
Escherichia coli , Nanopartículas , Ouro/química , Elétrons , Íons
2.
Ecotoxicol Environ Saf ; 264: 115479, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37716066

RESUMO

Bisphenol A (BPA) is widely used in the production of plastics, food containers, and receipt ink globally. However, research has identified it as an endocrine disruptor, affecting the hormonal balance in living organisms. Bisphenol S (BPS), one of the alternative substances, was developed, but its effects on human health and the underlying mechanisms remain unclarified. Specifically, research on the effects of oral exposure to bisphenol on the lungs is lacking. We examined the potential differences in toxicity between these compounds in lung cells in vitro and in vivo. Our toxicity mechanism studies on MRC5 and A549 cells exposed to BPA or BPS revealed that BPA induced actin filament abnormalities and activated epithelial-mesenchymal transition (EMT). This finding suggests an increased potential for lung fibrosis and metastasis in lung cancer. However, given that BPS was not detected at the administered dose and under the specific experimental conditions, the probability of these occurrences is considered minimal. Additionally, animal experiments confirmed that oral exposure to BPA activates EMT in the lungs. Our study provides evidence that prolonged oral exposure to BPA can lead to EMT activation in lung tissue, similar to that observed in cell experiments, suggesting the potential to induce lung fibrosis. This research emphasizes the importance of regulating the use of BPA to mitigate its associated pulmonary toxicity. Furthermore, it is significant that within the parameters of our experimental conditions, BPS did not exhibit the toxicological pathways clearly evident in BPA.


Assuntos
Fibrose Pulmonar , Animais , Humanos , Fibrose Pulmonar/induzido quimicamente , Fenóis/toxicidade , Pulmão
3.
Exp Mol Med ; 55(8): 1713-1719, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37524866

RESUMO

Keloid disorder is an abnormal fibroproliferative reaction that can occur on any area of skin, and it can impair the quality of life of affected individuals. To investigate the pathogenesis and develop a treatment strategy, a preclinical animal model of keloid disorder is needed. However, keloid disorder is unique to humans, and the development of an animal model of keloid disorder is highly problematic. We developed the patient-derived keloid xenograft (PDKX), which is a humanized mouse model, and compared it to the traditional mouse xenograft model (transplantation of only keloid lesions). To establish the PDKX model, peripheral mononuclear cells (PBMCs) from ten keloid patients or five healthy control subjects were injected into NOD/SCID/IL-2Rγnull mice, and their keloid lesions were grafted onto the back after the engraftment of immune cells (transplantation of keloid lesions and KP PBMCs or HC PBMCs). Four weeks after surgery, the grafted keloid lesion was subjected to histologic evaluation. Compared to the traditional model, neotissue formed along the margin of the grafted skin, and lymphocyte infiltration and collagen synthesis were significantly elevated in the PDKX model. The neotissue sites resembled the margin areas of keloids in several respects. In detail, the levels of human Th17 cells, IL-17, HIF-1a, and chemokines were significantly elevated in the neotissue of the PDKX model. Furthermore, the weight of the keloid lesion was increased significantly in the PDKX model, which was due to the proinflammatory microenvironment of the keloid lesion. We confirmed that our patient-derived keloid xenograft (PDKX) model mimicked keloid disorder by recapitulating the in vivo microenvironment. This model will contribute to the investigation of cellular mechanisms and therapeutic treatments for keloid disorders.


Assuntos
Queloide , Humanos , Camundongos , Animais , Queloide/etiologia , Queloide/tratamento farmacológico , Queloide/patologia , Xenoenxertos , Qualidade de Vida , Camundongos Endogâmicos NOD , Camundongos SCID , Fibroblastos/patologia , Modelos Animais de Doenças
4.
Arthritis Res Ther ; 25(1): 130, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37496081

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a systemic chronic inflammatory disease that leads to joint destruction and functional disability due to the targeting of self-antigens present in the synovium, cartilage, and bone. RA is caused by a number of complex factors, including genetics, environment, dietary habits, and altered intestinal microbial flora. Microorganisms in the gut bind to nod-like receptors and Toll-like receptors to regulate the immune system and produce various metabolites, such as short-chain fatty acids (SCFAs) that interact directly with the host. Faecalibacterium prausnitzii is a representative bacterium that produces butyrate, a well-known immunomodulatory agent in the body, and this microbe exerts anti-inflammatory effects in autoimmune diseases. METHODS: In this study, F. prausnitzii was administered in a mouse model of RA, to investigate RA pathology and changes in the intestinal microbial flora. Using collagen-induced arthritic mice, which is a representative animal model of RA, we administered F. prausnitzii orally for 7 weeks. RESULTS: The arthritis score and joint tissue damage were decreased in the mice administered F. prausnitzii compared with the vehicle-treated group. In addition, administration of F. prausnitzii reduced the abundance of systemic immune cells that secrete the pro-inflammatory cytokine IL-17 and induced changes in SCFA concentrations and the intestinal microbial flora composition. It also resulted in decreased lactate and acetate concentrations, an increased butyrate concentration, and altered compositions of bacteria known to exacerbate or improve RA. CONCLUSION: These results suggest that F. prausnitzii exerts a therapeutic effect on RA by regulation of IL-17 producing cells. In addition, F. prausnitzii modify the microbial flora composition and short chain fatty acids in experimental RA mouse model.


Assuntos
Artrite Reumatoide , Faecalibacterium prausnitzii , Camundongos , Animais , Faecalibacterium prausnitzii/metabolismo , Interleucina-17/metabolismo , Ácidos Graxos Voláteis/metabolismo , Modelos Animais de Doenças , Butiratos , Artrite Reumatoide/tratamento farmacológico
5.
Cell Commun Signal ; 21(1): 44, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864432

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) induces inflammation, autoantibody production, and thrombosis, which are common symptoms of autoimmune diseases, including rheumatoid arthritis (RA). However, the effect of COVID-19 on autoimmune disease is not yet fully understood. METHODS: This study was performed to investigate the effects of COVID-19 on the development and progression of RA using a collagen-induced arthritis (CIA) animal model. Human fibroblast-like synoviocytes (FLS) were transduced with lentivirus carrying the SARS-CoV-2 spike protein gene in vitro, and the levels of inflammatory cytokine and chemokine expression were measured. For in vivo experiments, CIA mice were injected with the gene encoding SARS-CoV-2 spike protein, and disease severity, levels of autoantibodies, thrombotic factors, and inflammatory cytokine and chemokine expression were assessed. In the in vitro experiments, the levels of inflammatory cytokine and chemokine expression were significantly increased by overexpression of SARS-CoV-2 spike protein in human FLS. RESULTS: The incidence and severity of RA in CIA mice were slightly increased by SARS-CoV-2 spike protein in vivo. In addition, the levels of autoantibodies and thrombotic factors, such as anti-CXC chemokine ligand 4 (CXCL4, also called PF4) antibodies and anti-phospholipid antibodies were significantly increased by SARS-CoV-2 spike protein. Furthermore, tissue destruction and inflammatory cytokine level in joint tissue were markedly increased in CIA mice by SARS-CoV-2 spike protein. CONCLUSIONS: The results of the present study suggested that COVID-19 accelerates the development and progression of RA by increasing inflammation, autoantibody production, and thrombosis. Video Abstract.


Assuntos
Artrite Experimental , Artrite Reumatoide , COVID-19 , Humanos , Animais , Camundongos , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2 , Inflamação , Citocinas , Autoanticorpos
6.
Front Immunol ; 13: 930511, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325344

RESUMO

Osteoarthritis (OA) reduces the quality of life as a result of the pain caused by continuous joint destruction. Inactivated Lactobacillus (LA-1) ameliorated osteoarthritis and protected cartilage by modulating inflammation. In this study, we evaluated the mechanism by which live LA-1 ameliorated OA. To investigate the effect of live LA-1 on OA progression, we administered LA-1 into monosodium iodoacetate (MIA)-induced OA animals. The pain threshold, cartilage damage, and inflammation of the joint synovial membrane were improved by live LA-1. Furthermore, the analysis of intestinal tissues and feces in the disease model has been shown to affect the systems of the intestinal system and improve the microbiome environment. Interestingly, inflammation of the intestinal tissue was reduced, and the intestinal microbiome was altered by live LA-1. Live LA-1 administration led to an increase in the level of Faecalibacterium which is a short-chain fatty acid (SCFA) butyrate-producing bacteria. The daily supply of butyrate, a bacterial SCFA, showed a tendency to decrease necroptosis, a type of abnormal cell death, by inducing autophagy and reversing impaired autophagy by the inflammatory environment. These results suggest that OA is modulated by changes in the gut microbiome, suggesting that activation of autophagy can reduce aberrant cell death. In summary, live LA-1 or butyrate ameliorates OA progression by modulating the gut environment and autophagic flux. Our findings suggest the regulation of the gut microenvironment as a therapeutic target for OA.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Condrócitos/metabolismo , Cartilagem Articular/metabolismo , Butiratos/metabolismo , Lactobacillus , Qualidade de Vida , Modelos Animais de Doenças , Osteoartrite/metabolismo , Inflamação/metabolismo , Autofagia , Morte Celular
7.
Nano Lett ; 22(19): 7927-7935, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36137175

RESUMO

Electron transfer through the mitochondrial electron transport chain (ETC) can be critically blocked by the dysfunction of protein complexes. Redox-active molecules have been used to mediate the electron transfer in place of the dysfunctional complexes; however, they are limited to replacing complex I and are known to be toxic. Here we report artificial mitochondrial electron transfer pathways that enhance ETC activity by exploiting inner-membrane-bound gold nanoparticles (GNPs) as efficient electron transfer mediators. The hybridization of mitochondria with GNPs, driven by electrostatic interaction, is successfully visualized in real time at the level of a single mitochondrion. By observing quantized quenching dips via plasmon resonance energy transfer, we reveal that the hybridized GNPs are bound to the inner membrane of mitochondria irrespective of the presence of the outer membrane. The ETC activity of mitochondria with GNPs such as membrane potential, oxygen consumption, and ATP production is remarkably increased in vitro.


Assuntos
Ouro , Nanopartículas Metálicas , Trifosfato de Adenosina , Transporte de Elétrons , Elétrons
8.
Front Immunol ; 13: 922531, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059546

RESUMO

Ankylosing spondylitis (AS) is a chronic inflammatory disease that causes spinal inflammation and fusion. Although the cause of AS is unknown, genetic factors (e.g., HLA-B27) and environmental factors (e.g., sex, age, and infection) increase the risk of AS. Current treatments for AS are to improve symptoms and suppress disease progression. There is no way to completely cure it. High blood cholesterol and lipid levels aggravate the symptoms of autoimmune diseases. We applied hyperlipidemia drugs ezetimibe and rosuvastatin to AS mice and to PBMCs from AS patients. Ezetimibe and rosuvastatin was administered for 11 weeks to AS model mice on the SKG background. Then, the tissues and cells of mice were performed using flow cytometry, computed tomography, immunohistochemistry, and immunofluorescence. Also, the normal mouse splenocytes were cultured in Th17 differentiation conditions for in vitro analysis such as flow cytometry, ELISA and RNA sequencing. The 10 AS patients' PBMCs were treated with ezetimibe and rosuvastatin. The patients' PBMC were analyzed by flow cytometry and ELISA for investigation of immune cell type modification. Ezetimibe caused substantial inhibition for AS. The present study showed that ezetimibe inhibits Th17 cell function, thereby slowing the progression of AS. It is well known that statins are more effective in reducing blood lipid concentrations than ezetimibe, however, our results that ezetimibe had a better anti-inflammatory effect than rosuvastatin in AS. This data suggests that ezetimibe has an independent anti-inflammatory effect independent of blood lipid reduction. To investigate whether ezetimibe has its anti-inflammatory effect through which signaling pathway, various in vitro experiments and RNA sequencing have proceeded. Here, this study suggests that ezetimibe can be an effective treatment for AS patients by inhibiting Th17 differentiation-related genes such as IL-23R and IL-1R. Thus, this study suggests that ezetimibe has therapeutic potential for AS through inhibition of Th17 differentiation and the production of pro-inflammatory cytokines.


Assuntos
Espondilite Anquilosante , Animais , Anti-Inflamatórios/uso terapêutico , Ezetimiba/metabolismo , Ezetimiba/farmacologia , Ezetimiba/uso terapêutico , Leucócitos Mononucleares/metabolismo , Camundongos , Rosuvastatina Cálcica/metabolismo , Rosuvastatina Cálcica/farmacologia , Rosuvastatina Cálcica/uso terapêutico , Células Th17
9.
J Transl Med ; 20(1): 428, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36138477

RESUMO

BACKGROUND: Osteoarthritis (OA) is the most common type of degenerative arthritis and affects the entire joint, causing pain, joint inflammation, and cartilage damage. Various risk factors are implicated in causing OA, and in recent years, a lot of research and interest have been directed toward chronic low-grade inflammation in OA. Monocyte chemoattractant protein-1 (MCP-1; also called CCL2) acts through C-C chemokine receptor type 2 (CCR2) in monocytes and is a chemotactic factor of monocytes that plays an important role in the initiation of inflammation. The targeting of CCL2-CCR2 is being studied as part of various topics including the treatment of OA. METHODS: In this study, we evaluated the potential therapeutic effects the sCCR2 E3 gene may exert on OA. The effects of sCCR2 E3 were investigated in animal experiments consisting of intra-articular injection of sCCR2 E3 in a monosodium iodoacetate (MIA)-induced OA rat model. The effects after intra-articular injection of sCCR2 E3 (fusion protein encoding 20 amino acids of the E3 domain of the CCL2 receptor) in a monosodium iodoacetate-induced OA rat model were compared to those in rats treated with empty vector (mock treatment) and full-length sCCR2. RESULTS: Pain improved with expression of the sCCR2 gene. Improved bone resorption upon sCCR2 E3 gene activation was confirmed via bone analyses using micro-computed tomography. Histologic analyses showed that the sCCR2 E3 gene exerted protective effects against cartilage damage and anti-inflammatory effects on joints and the intestine. CONCLUSIONS: These results show that sCCR2 E3 therapy is effective in reducing pain severity, inhibiting cartilage destruction, and suppressing intestinal damage and inflammation. Thus, sCCR2 E3 may be a potential therapy for OA.


Assuntos
Cartilagem Articular , Osteoartrite , Aminoácidos/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Cartilagem/patologia , Cartilagem Articular/patologia , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Modelos Animais de Doenças , Terapia Genética , Inflamação/metabolismo , Ácido Iodoacético/metabolismo , Ácido Iodoacético/toxicidade , Osteoartrite/diagnóstico por imagem , Osteoartrite/genética , Osteoartrite/terapia , Dor/patologia , Ratos , Receptores CCR2/genética , Receptores CCR2/metabolismo , Receptores de Quimiocinas/metabolismo , Microtomografia por Raio-X
10.
Gut Microbes ; 14(1): 2102885, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35951731

RESUMO

ABBREVIATIONS: LT, liver transplantation; HCC, hepatocellular carcinoma; IS, immunosuppressants; DC, dendritic cells; Treg, regulatory T; Th17, T helper 17; AST, aspartate transaminase; ALT, alanine transaminase; OUT, operational taxonomic unit; LEfSe, linear discriminant analysis effect size; LDA, linear discriminant analysis; IL, interleukin; TGF, transforming growth factor; GM-CSF, granulocyte-macrophage colony-stimulating factor; IFN, interferon; TNF-α, tumor necrosis factor-α; MIP-1α, macrophage inflammatory protein-1α; IP-10, interferon γ-induced protein; MCP-1, monocyte chemoattractant protein-1; ACR, acute cellular rejection; NF-κB, nuclear factor κB; PT INR, prothrombin time; QC, quality check; PBMC, peripheral blood mononuclear cells; PBS, phosphate-buffered saline; ELISA, enzyme-linked immunosorbent assay.


Assuntos
Carcinoma Hepatocelular , Microbioma Gastrointestinal , Neoplasias Hepáticas , Transplante de Fígado , Citocinas , Faecalibacterium/metabolismo , Homeostase , Humanos , Leucócitos Mononucleares/metabolismo , NF-kappa B , Fator de Necrose Tumoral alfa/metabolismo
11.
Front Immunol ; 13: 888719, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757697

RESUMO

Keloid is an abnormal fibrotic disease after cutaneous injury characterized by exaggerated scar tissue formation, which often extends beyond the boundaries of the original wound. Although chronic inflammation is known to be associated with the excessive inflammation in keloid tissue, there are few studies on the role of autophagy in the pathogenesis of keloid. In this study, we evaluated the pattern of autophagy in keloid fibroblasts (KF) and normal fibroblasts (NF). Expression of HIF-1α, STAT3 and autophagic flux markers were evaluated in KF and NF. Defective autophagy caused by IL-17 was evaluated, and the relationship between defective autophagy and necroptosis was also examined. The expression of IL-17, HIF-1α and STAT3 was significantly increased in keloid tissue, and autophagosome-to autophagolysosome conversion was defective in KF. IL-17 treatment significantly elevated the expression of STAT3 and HIF-1α in NF and caused defective autophagy, which was reversed by HIF-1α inhibitor. In addition, the defective autophagy was associated with the increased necroptosis and fibrosis. In keloid tissue, the elevated necroptosis marker was confirmed, and with the HIF-1α inhibitor, the defective autophagy, necroptosis and fibrosis was decreased in KF. In conclusion, autophagy was defective in keloid tissue, which was associated with increased necroptosis and fibrosis. The IL-17-STAT3-HIF-1α axis was involved in defective autophagy in KF, and this suggests that targeting the axis could alleviate chronic inflammation in keloid disease.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Interleucina-17 , Queloide , Fator de Transcrição STAT3 , Autofagia , Morte Celular , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Interleucina-17/metabolismo , Queloide/metabolismo , Queloide/patologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
12.
Immune Netw ; 22(2): e14, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35573148

RESUMO

Osteoarthritis (OA) is a common degenerative joint disease characterized by breakdown of joint cartilage. Mitochondrial dysfunction of the chondrocyte is a risk factor for OA progression. We examined the therapeutic potential of mitochondrial transplantation for OA. Mitochondria were injected into the knee joint of monosodium iodoacetate-induced OA rats. Chondrocytes from OA rats or patients with OA were cultured to examine mitochondrial function in cellular pathophysiology. Pain, cartilage destruction, and bone loss were improved in mitochondrial transplanted-OA rats. The transcript levels of IL-1ß, TNF-α, matrix metallopeptidase 13, and MCP-1 in cartilage were markedly decreased by mitochondrial transplantation. Mitochondrial function, as indicated by membrane potential and oxygen consumption rate, in chondrocytes from OA rats was improved by mitochondrial transplantation. Likewise, the mitochondrial function of chondrocytes from OA patients was improved by coculture with mitochondria. Furthermore, inflammatory cell death was significantly decreased by coculture with mitochondria. Mitochondrial transplantation ameliorated OA progression, which is caused by mitochondrial dysfunction. These results suggest the therapeutic potential of mitochondrial transplantation for OA.

13.
Biomedicines ; 10(4)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35453619

RESUMO

Cell therapy products have significant limitations, such as storage instability, difficulties with transportation, and toxicity issues such as tumorigenicity and immunogenicity. Extracellular vesicles (EVs) secreted from cells show potential for therapeutic agent development. EVs have not been widely examined as investigational drugs, and non-clinical studies for the clinical approval of EV therapeutic agents are challenging. EVs contain various materials, such as DNA, cellular RNA, cytokines, chemokines, and microRNAs, but do not proliferate or divide like cells, thus avoiding safety concerns related to tumorigenicity. However, the constituents of EVs may induce the proliferation of normal cells; therefore, the suitability of vesicles should be verified through non-clinical safety evaluations. In this review, the findings of non-clinical studies on EVs are summarized. We describe non-clinical toxicity studies of EVs, which should be useful for researchers who aim to develop these vesicles into therapeutic agents. A new method for evaluating the immunotoxicity and tumorigenicity of EVs should also be developed.

14.
Sci Rep ; 12(1): 2928, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190588

RESUMO

Biomarkers for treatment sensitivity or drug resistance used in precision medicine include prognostic and predictive molecules, critical factors in selecting appropriate treatment protocols and improving survival rates. However, identification of accurate biomarkers remain challenging due to the high risk of false-positive findings and lack of functional validation results for each biomarker. Here, we discovered a mechanical correlation between leucine proline-enriched proteoglycan 1 (LEPRE1) and pelitinib drug sensitivity using in silico statistical methods and confirmed the correlation in acute myeloid leukemia (AML) and A549 lung cancer cells. We determined that high LEPRE1 levels induce protein kinase B activation, overexpression of ATP-binding cassette superfamily G member 2 (ABCG2) and E-cadherin, and cell colonization, resulting in a cancer stem cell-like phenotype. Sensitivity to pelitinib increases in LEPRE1-overexpressing cells due to the reversing effect of ABCG2 upregulation. LEPRE1 silencing induces pelitinib resistance and promotes epithelial-to-mesenchymal transition through actin rearrangement via a series of Src/ERK/cofilin cascades. The in silico results identified a mechanistic relationship between LEPRE1 and pelitinib drug sensitivity, confirmed in two cancer types. This study demonstrates the potential of LEPRE1 as a biomarker in cancer through in-silico prediction and in vitro experiments supporting the clinical development of personalized medicine strategies based on bioinformatics findings.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Aminoquinolinas/farmacologia , Compostos de Anilina/farmacologia , Antineoplásicos/farmacologia , Biomarcadores Tumorais , Transição Epitelial-Mesenquimal/genética , Regulação Leucêmica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/fisiologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Prolil Hidroxilases/genética , Prolil Hidroxilases/fisiologia , Proteoglicanas/genética , Proteoglicanas/fisiologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Leucemia Mieloide Aguda/diagnóstico , Neoplasias Pulmonares/diagnóstico
15.
PLoS One ; 17(1): e0262183, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34986165

RESUMO

PURPOSE: Spondyloarthritis (SpA) is a systemic inflammatory arthritis mediated mainly by interleukin (IL)-17. The vitronectin-derived bioactive peptide, VnP-16, exerts an anti-osteoporotic effect via ß1 and αvß3 integrin signaling. SpA is associated with an increased risk of osteoporosis, and we investigated the effect of VnP-16 in mice with SpA. METHODS: SpA was induced by curdlan in SKG ZAP-70W163C mice, which were treated with vehicle, celecoxib, VnP-16, or VnP-16+celecoxib. The clinical score, arthritis score, spondylitis score, and proinflammatory cytokine expression of the spine were evaluated by immunohistochemical staining. Type 17 helper T cell (Th17) and regulatory T cell (Treg) differentiation in the spleen was evaluated by flow cytometry and in the spine by confocal staining. Splenocyte expression of signal transducer and activator of transcription (STAT) 3 and pSTAT3 was evaluated by in vitro Western blotting. RESULTS: The clinical score was significantly reduced in the VnP16+celecoxib group. The arthritis and spondylitis scores were significantly lower in the VnP-16 and VnP16+celecoxib groups than the vehicle group. In the spine, the levels of IL-1ß, IL-6, tumor necrosis factor-α, and IL-17 expression were reduced and Th17/Treg imbalance was regulated in the VnP-16 alone and VnP-16+celecoxib groups. Flow cytometry of splenocytes showed increased polarization of Tregs in the VnP-16+celecoxib group. In vitro, VnP-16 suppressed pSTAT3. CONCLUSIONS: VnP-16 plus celecoxib prevented SpA progression in a mouse model by regulating the Th17/Treg imbalance and suppressing the expression of proinflammatory cytokines.


Assuntos
Celecoxib/administração & dosagem , Peptídeos/administração & dosagem , Espondilartrite/tratamento farmacológico , Linfócitos T Reguladores/metabolismo , Células Th17/metabolismo , Vitronectina/química , beta-Glucanas/efeitos adversos , Animais , Celecoxib/farmacologia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Integrina alfaVbeta3/metabolismo , Integrina beta1/metabolismo , Camundongos , Peptídeos/farmacologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Baço/imunologia , Espondilartrite/induzido quimicamente , Espondilartrite/genética , Espondilartrite/imunologia
16.
Cell Mol Immunol ; 19(1): 79-91, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34782759

RESUMO

OBJECTIVE: The interleukin (IL)-12 cytokine family is closely related to the development of T helper cells, which are responsible for autoimmune disease enhancement or suppression. IL-12 family members are generally heterodimers and share three α-subunits (p35, p19, and p28) and two ß-subunits (p40 and EBI3). However, a ß-sheet p40 homodimer has been shown to exist and antagonize IL-12 and IL-23 signaling 1. Therefore, we assumed the existence of a p40-EBI3 heterodimer in nature and sought to investigate its role in immune regulation. METHODS: The presence of the p40-EBI3 heterodimer was confirmed by ELISA, immunoprecipitation, and western blotting. A p40-EBI3 vector and p40-EBI3-Fc protein were synthesized to confirm the immunological role of this protein in mice with collagen-induced arthritis (CIA). The anti-inflammatory effects of p40-EBI3 were analyzed with regard to clinical, histological, and immune cell-regulating features in mice with CIA. RESULTS: Clinical arthritis scores and the expression levels of proinflammatory cytokines (e.g., IL-17, IL-1ß, IL-6, and TNF-α) were significantly attenuated in p40-EBI3-overexpressing and p40-EBI3-Fc-treated mice with CIA compared to vehicle-treated mice with CIA. Structural joint damage and vessel formation-related gene expression were also reduced by p40-EBI3 heterodimer treatment. In vitro, the p40-EBI3-Fc protein significantly suppressed the differentiation of Th17 cells and reciprocally induced CD4+CD25+Foxp3+ (regulatory T) cells. p40-EBI3 also inhibited osteoclast formation in a concentration-dependent manner. CONCLUSION: In this study, p40-EBI3 ameliorated proinflammatory conditions both in vivo and in vitro. We propose that p40-EBI3 is a novel anti-inflammatory cytokine involved in suppressing the immune response through the expansion of Treg cells and suppression of Th17 cells and osteoclastogenesis.


Assuntos
Artrite Experimental , Doenças Autoimunes , Interleucina-12 , Animais , Citocinas/uso terapêutico , Interleucina-12/química , Interleucina-12/metabolismo , Camundongos , Antígenos de Histocompatibilidade Menor , Receptores de Citocinas/genética , Receptores de Citocinas/uso terapêutico , Linfócitos T Reguladores , Células Th17
17.
Front Immunol ; 12: 736196, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867956

RESUMO

The potential therapeutic effects of probiotic bacteria in rheumatoid arthritis (RA) remain controversial. Thus, this study aimed to discover potential therapeutic bacteria based on the relationship between the gut microbiome and rheumatoid factor (RF) in RA. Bacterial genomic DNA was extracted from the fecal samples of 93 RA patients and 16 healthy subjects. Microbiota profiling was conducted through 16S rRNA sequencing and bioinformatics analyses. The effects of Bifidobacterium strains on human peripheral blood mononuclear cells and collagen-induced arthritis (CIA) mice were assessed. Significant differences in gut microbiota composition were observed in patients with different RF levels. The relative abundance of Bifidobacterium and Collinsella was lower in RF-high than in RF-low and RF-negative RA patients, while the relative abundance of Clostridium of Ruminococcaceae family was higher in RF-high than in RF-low and RF-negative patients. Among 10 differentially abundant Bifidobacterium, B. longum RAPO exhibited the strongest ability to inhibit IL-17 secretion. Oral administration of B. longum RAPO in CIA mice, obese CIA, and humanized avatar model significantly reduced RA incidence, arthritis score, inflammation, bone damage, cartilage damage, Th17 cells, and inflammatory cytokine secretion. Additionally, B. longum RAPO significantly inhibited Th17 cells and Th17-related genes-IL-17A, IRF4, RORC, IL-21, and IL-23R-in the PBMCs of rheumatoid arthritis patients. Our findings suggest that B. longum RAPO may alleviate RA by inhibiting the production of IL-17 and other proinflammatory mediators. The safety and efficacy of B. longum RAPO in patients with RA and other autoimmune disorders merit further investigation.


Assuntos
Artrite Reumatoide/imunologia , Artrite Reumatoide/terapia , Bifidobacterium/imunologia , Bifidobacterium/isolamento & purificação , Microbioma Gastrointestinal/imunologia , Probióticos/uso terapêutico , Fator Reumatoide/sangue , Adulto , Animais , Artrite Experimental/imunologia , Artrite Experimental/terapia , Bifidobacterium/genética , Biodiversidade , Estudos de Casos e Controles , Feminino , Microbioma Gastrointestinal/genética , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos DBA , Camundongos Endogâmicos NOD , Camundongos Obesos , Camundongos SCID , Pessoa de Meia-Idade , Células Th17/imunologia
18.
PLoS One ; 16(12): e0259130, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34855756

RESUMO

The green-lipped mussel (GLM) contains novel omega-3 polyunsaturated fatty acids, which exhibit anti-inflammatory and joint-protecting properties. Osteoarthritis (OA) is a degenerative joint disease characterized by a progressive loss of cartilage; oxidative stress plays a role in the pathogenesis of OA. The objectives of this study were to investigate the in vivo effects of the GLM on pain severity and cartilage degeneration using an experimental rat OA model, and to explore the mode of action of GLM. OA was induced in rats by intra-articular injection of monosodium iodoacetate (MIA) into the knee. Oral GLM was initiated on the day after 3dyas of MIA injection. Limb nociception was assessed by measuring the paw withdrawal latency and threshold. Samples were analyzed both macroscopically and histologically. Immunohistochemistry was used to investigate the expression of interleukin-1ß (IL-1ß), IL-6, nitrotyrosine, and inducible nitric oxide synthase (iNOS) in knee joints. Also, the GLM was applied to OA chondrocyte, and the expression on catabolic marker and necroptosis factor were evaluated by real-time polymerase chain reaction. Administration of the GLM improved pain levels by preventing cartilage damage and inflammation. GLM significantly attenuated the expression levels of mRNAs encoding matrix metalloproteinase-3 (MMP-3), MMP-13, and ADAMTS5 in IL-1ß-stimulated human OA chondrocytes. GLM decreased the expression levels of the necroptosis mediators RIPK1, RIPK3, and the mixed lineage kinase domain-like protein (MLKL) in IL-1ß-stimulated human OA chondrocytes. Thus, GLM reduced pain and cartilage degeneration in rats with experimentally induced OA. The chondroprotective properties of GLM included suppression of oxidative damage and inhibition of catabolic factors implicated in the pathogenesis of OA cartilage damage. We suggest that GLM may usefully treat human OA.


Assuntos
Anti-Inflamatórios/farmacologia , Bivalves/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Inflamação/tratamento farmacológico , Osteoartrite/tratamento farmacológico , Dor/tratamento farmacológico , Animais , Masculino , Ratos , Ratos Wistar
20.
J Transl Med ; 19(1): 192, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947424

RESUMO

Scleroderma is an autoimmune disease that causes dermal fibrosis. It occurs when collagen accumulates in tissue as a result of persistent inflammation. Th17 cells and pro-inflammatory cytokines such as IL-1ß, IL-6, IL-17, and TNF-α play important roles in the pathogenesis of scleroderma. Because metformin, a medication used to treat diabetes, has effective immunoregulatory functions, we investigated its therapeutic function in scleroderma. Mice in a model of bleomycin-induced scleroderma were treated with metformin for 2 weeks. Histological assessment demonstrated protective effects of metformin against scleroderma. Metformin decreased the expression of pro-inflammatory factors in dermal tissue and lymphocytes. It also decreased mRNA expression of pro-inflammatory cytokines (IL-1ß, IL-6, IL-17, and TNF-α) and fibrosis-inducing molecules both in vivo and in vitro. These results suggest that metformin treatment has anti-inflammatory effects on lymphocytes via the inhibition of IL-17 and cytokines related to Th17 differentiation, such as IL-1ß, IL-6, and TNF-α. To investigate how metformin modulates the inflammatory process in skin fibroblasts, we measured mTOR-STAT3 signaling in skin fibroblasts and found that phosphorylated mTOR and phosphorylated STAT3 protein expression were decreased by metformin treatment. These results suggest that metformin has potential to treat scleroderma by inhibiting pro-inflammatory cytokines and anti-inflammatory activity mediated by mTOR-STAT3 signaling.


Assuntos
Metformina , Células Th17 , Animais , Fibroblastos/metabolismo , Metformina/farmacologia , Camundongos , Fator de Transcrição STAT3 , Pele/metabolismo , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...